

General Certificate of Education Advanced Subsidiary Examination January 2013

Mathematics

Unit Statistics 1B

MS/SS1B

Statistics

Unit Statistics 1B

Friday 18 January 2013 1.30 pm to 3.00 pm

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.
- You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do **not** use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.
- Unit Statistics 1B has a written paper only.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1 Bob, a church warden, decides to investigate the lifetime of a particular manufacturer's brand of beeswax candle. Each candle is 30 cm in length.

From a box containing a large number of such candles, he selects one candle at random. He lights the candle and, after it has burned continuously for x hours, he records its length, y cm, to the nearest centimetre. His results are shown in the table.

x	5	10	15	20	25	30	35	40	45
у	27	25	21	19	16	11	9	5	2

- (a) State the value that you would **expect** for *a* in the equation of the least squares regression line, y = a + bx. (1 mark)
- (b) (i) Calculate the equation of the least squares regression line, y = a + bx. (4 marks)
 - (ii) Interpret the value that you obtain for b. (2 marks)
 - (iii) It is claimed by the candle manufacturer that the total length of time that such candles are likely to burn for is more than 50 hours.

Comment on this claim, giving a numerical justification for your answer. (2 marks)

2 The volume of *Everwhite* toothpaste in a pump-action dispenser may be modelled by a normal distribution with a mean of 106 ml and a standard deviation of 2.5 ml.

Determine the probability that the volume of *Everwhite* in a randomly selected dispenser is:

(a)	less than 110 ml;	(3 marks)
(b)	more than 100 ml;	(2 marks)
(c)	between 104 ml and 108 ml;	(3 marks)
(d)	not exactly 106 ml.	(1 mark)

- 3 *Stopoff* owns a chain of hotels. Guests are presented with the bills for their stays when they check out.
 - (a) Assume that the number of bills that contain errors may be modelled by a binomial distribution with parameters n and p, where p = 0.30.

Determine the probability that, in a random sample of 40 bills:

- (i) at most 10 bills contain errors;
- (ii) at least 15 bills contain errors;
- (iii) exactly 12 bills contain errors.

(6 marks)

- (b) Calculate the mean and the variance for each of the distributions B(16, 0.20) and B(16, 0.125). (3 marks)
- (c) Stan, who is a travelling salesperson, always uses *Stopoff* hotels. He holds one of its diamond customer cards and so should qualify for special customer care. However, he regularly finds errors in his bills when he checks out.

Each month, during a 12-month period, Stan stayed in *Stopoff* hotels on exactly 16 occasions. He recorded, each month, the number of occasions on which his bill contained errors. His recorded values were as follows.

2 1 4 3 1 3 0 3 1 0 5 1

- (i) Calculate the mean and the variance of these 12 values. (2 marks)
- (ii) Hence state with reasons which, if either, of the distributions B(16, 0.20) and B(16, 0.125) is likely to provide a satisfactory model for these 12 values. (3 marks)

4 Ashok is a work-experience student with an organisation that offers two separate professional examination papers, I and II.

For each of a random sample of 12 students, A to L, he records the mark, x per cent, achieved on Paper I, and the mark, y per cent, achieved on Paper II.

	Α	В	С	D	E	F	G	Н	Ι	J	K	L
x	34	46	53	62	67	72	60	54	70	71	82	85
у	61	66	72	78	88	81	49	60	54	44	49	36

(a) (i) Calculate the value of the product moment correlation coefficient, r, between x and y. (3 marks)

(ii) Interpret your value of r in the context of this question. (2 marks)

- (b) (i) Give two possible advantages of plotting data on a graph before calculating the value of a product moment correlation coefficient. (2 marks)
 - (ii) Complete the plotting of Ashok's data on the scatter diagram on page 5.

(2 marks)

- (iii) State what is now revealed by the scatter diagram. (1 mark)
- (c) Ashok subsequently discovers that students A to F have a more scientific background than students G to L.

With reference to your scatter diagram, estimate the value of the product moment correlation coefficient for **each** of the two groups of students. You are **not** expected to calculate the two values. (2 marks)

	G	Н	Ι	J	K	L
x	60	54	70	71	82	85
у	49	60	54	44	49	36

Examination Marks

Turn over ►

Roger is an active retired lecturer. Each day after breakfast, he decides whether the weather for that day is going to be fine (F), dull (D) or wet (W). He then decides on only one of four activities for the day: cycling (C), gardening (G), shopping (S) or relaxing (R). His decisions from day to day may be assumed to be independent.

6

		Weather					
		Fine (F)	Dull (D)	Wet (<i>W</i>)			
	Cycling (C)	0.30	0.10	0			
Activity	Gardening (G)	0.25	0.05	0			
Activity	Shopping (S)	0	0.10	0.05			
	Relaxing (R)	0	0.05	0.10			

The table shows Roger's probabilities for each combination of weather and activity.

(a) Find the probability that, on a particular day, Roger decided:

(i) that it was going to be fine and that he would go cycling;

(ii) on either gardening or shopping;

(iii) to go cycling, given that he had decided that it was going to be fine;

(iv) not to relax, given that he had decided that it was going to be dull;

- (v) that it was going to be fine, given that he did **not** go cycling. (9 marks)
- (b) Calculate the probability that, on a particular Saturday and Sunday, Roger decided that it was going to be fine and decided on the same activity for both days.

(3 marks)

5

6 (a) The length of one-metre galvanised-steel straps used in house building may be modelled by a normal distribution with a mean of 1005 mm and a standard deviation of 15 mm.

The straps are supplied to house builders in packs of 12, and the straps in a pack may be assumed to be a random sample.

Determine the probability that the **mean** length of straps in a pack is less than one metre. (4 marks)

- (b) Tania, a purchasing officer for a nationwide house builder, measures the **thickness**, x millimetres, of each of a random sample of 24 galvanised-steel straps supplied by a manufacturer. She then calculates correctly that the value of \overline{x} is 4.65 mm.
 - (i) Assuming that the thickness, X mm, of such a strap may be modelled by the distribution $N(\mu, 0.15^2)$, construct a 99% confidence interval for μ . (4 marks)
 - (ii) Hence comment on the manufacturer's specification that the mean thickness of such straps is greater than 4.5 mm. (2 marks)
- 7 A machine, which cuts bread dough for loaves, can be adjusted to cut dough to any specified set weight. For any set weight, μ grams, the actual weights of cut dough are known to be approximately normally distributed with a mean of μ grams and a fixed standard deviation of σ grams.

It is also known that the machine cuts dough to within 10 grams of any set weight.

- (a) Estimate, with justification, a value for σ . (2 marks)
- (b) The machine is set to cut dough to a weight of 415 grams.

As a training exercise, Sunita, the quality control manager, asked Dev, a recently employed trainee, to record the weight of each of a random sample of 15 such pieces of dough selected from the machine's output. She then asked him to calculate the mean and the standard deviation of his 15 recorded weights.

Dev subsequently reported to Sunita that, for his sample, the mean was 391 grams and the standard deviation was 95.5 grams.

Advise Sunita on whether or not **each** of Dev's values is likely to be correct. Give numerical support for your answers. (3 marks)

(c) Maria, an experienced quality control officer, recorded the weight, y grams, of each of a random sample of 10 pieces of dough selected from the machine's output when it was set to cut dough to a weight of 820 grams. Her summarised results were as follows.

$$\sum y = 8210.0$$
 and $\sum (y - \overline{y})^2 = 110.00$

Explain, with numerical justifications, why **both** of these values are likely to be correct. (4 marks)

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1B				
Q	Solution	Marks	Total	Comments
1 (a)	<i>a</i> = <u>30</u>	B1	1	САО
(b)(i)	b (gradient) = -0.64 b (gradient) = -0.6 to -0.7	B2 (B1)		CAO (-0.64) AWFW Treat rounding of correct answers as ISW Written form of equation is not required
	$a \text{ (intercept)} = \frac{31}{30 \text{ to } 32}$ $a \text{ (intercept)} = \frac{30 \text{ to } 32}{30 \text{ to } 32}$	B2 (B1)		CAO (31) AWFW
	Attempt at $\sum x \sum x^2 \sum y \& \sum xy (\sum y^2)$ or Attempt at $S_{xx} \& S_{xy} (S_{yy})$ Attempt at correct formula for <i>b</i> (gradient) <i>b</i> (gradient) = <u>-0.64</u> <i>a</i> (intercept) = <u>31</u>	(M1) (m1) (A1 A1)	4	225 7125 135 & 2415 (2643) (all 4 attempted) 1500 & - 960 (618) (both attempted) CAO both
(ii)	Candle length reduces by 0.64 (cm) per hour Candle burns 0.64 (cm) each/per hour Candle reduces by –0.64 (cm) each/per hour	B1 BF1 (BF2) (BF1)	4	OE; must be in context OE; must be in context OE; must be in context OE; must be in context (double -ve) F on $-0.6 \le b \le -0.7$ from (i)
	(Length, y, cm) decreases with (time, x, hours) or As (time, x, hours) increases then (length, y, cm) decreases	(B1)	2	OE; context not required B0 for reference only to correlation
(iii)	When $x = 50$, $y = (31 \text{ or } 30) - 0.64 \times 50$ = $-1 \text{ or } -2$ or When $y = 0$, $x = 31 \div 0.64 = 48 \text{ to } 48.5$ or $30 \div 0.64 = 46.8 \text{ to } 47$	B1		CAO; accept correct comparison of 32 with either 30 or 31 AWFW AWFW
	Claim not justified or -1 is impossible or value < 50	Bdep1		OE; dependent on previous B1
	Claim cannot be answered due to uneven burning or unlikely to burn completely	(B1)	2	Extrapolation required
			9	

MS/SS11	B (cont)			
Q	Solution	Marks	Total	Comments
2				In (a), ignore the inclusion of a lower limit of 0; it has no effect on the answer
	<u>Volume, $V \sim N(106, 2.5^2)$</u>			
(a)	$P(V < 110) = P\left(Z < \frac{110 - 106}{2.5}\right)$	M1		Standardising 110 with 106 and 2.5; allow $(106 - 110)$
	$= P(Z < \underline{1.6})$	A1		CAO; ignore inequality and sign May be implied by a correct answer
	= <u>0.945</u>	A1	3	AWRT (0.94520)
(b)	P(V > 100) = P(Z > -2.4) = P(Z < +2.4)	M1		Correct area change May be implied by a correct answer or by an answer > 0.5
	= <u>0.991 to 0.992</u>	A1	2	AWFW (0.99180)
(c)	P(104 < V < 108) = P(-a < Z < a) =			
	P(Z < a) - (1 - P(Z < a)) or $2 \times P(Z < a) - 1$	M1		OE; $a = 0.8$ is not a requirement May be implied by 0.788 seen or by a correct answer
	= 0.788 - (1 - 0.788) = 0.788 - 0.212 or $= 2 \times 0.788 - 1$	A1		AWRT (0.78814/0.21186) Condone 0.211 May be implied by a correct answer
	= <u>0.576</u>	A1	3	AWRT (0.57628)
(d)	$P(V \neq 106) = 1$ or one or unity or 100%	B1	1	CAO; accept nothing else but ignore additional words providing they are not contradictory (eg certain so = 1)
		Total	9	

MS/SS1B	(cont)			
Q	Solution	Marks	Total	Comments
3 (a)	<u>$E \sim B(40, 0.30)$</u>	M1		Used anywhere in (a) even only by implication from a correct value
(i)	$P(E \le 10) = 0.308 \text{ to } 0.309$	A1	(2)	AWFW (0.3087)
SC	For calc ⁿ of individual terms: award B2 for answer within a	bove range;	award B1	for answer within range 0.3 to 0.32
(ii)	$P(E \ge 15) = 1 - (0.8074 \text{ or } 0.8849)$	M1		Requires '1 $-$ ' Accept 3 dp rounding or truncation Can be implied by 0.192 to 0.193 but not by 0.115 to 0.116 AWEW (0.1926)
	- 0.172 0 0.175		(2)	AWI W (0.1720)
SC	For calc ⁿ of individual terms: award B2 for answer within a	L. bove range;	award B1	for answer within range 0.18 to 0.2
(iii)	or $P(E \le 12) = 0.5772 - 0.4406$ $P(E \le 12) = \binom{40}{12} 0.3^{12} 0.7^{28}$	M1		Accept 3 dp rounding or truncation Correct expression; may be implied
	= 0.136 to 0.138	A1	(2) 6	by a correct answer AWFW (0.1366)
(b)	Means = 3.2 and 2 Variances = 2.56 and 1.75	B1 B1 B1	3	CAO both values ; ignore notation <i>If not labelled, assume order in question</i> CAO each value ; ignore notation ISW all subsequent working
(c)(i)	Mean = $\underline{2}$ Variance = $\underline{2.54 \text{ to } 2.55 \text{ or } 2.33 \text{ to } 2.34}$ (SD = 1.59 to 1.6 or 1.52 to 1.53)	B1 B1	2	CAO value ; ignore notation Any value within either range; ignore notation ISW all subsequent working
(ii)	B(16, 0.20) or eg "One dist" Different/larger mean Similar/same variance or standard deviation B(16, 0.125) or eg "Other dist" Equal/same mean Different/smaller variance or standard deviation	Bdep1 Bdep1		Identification of distribution not required Both; dep on 3.2 , $2.56/1.6$ & (c)(i) Identification of distribution not required Both; dep on 2, $1.75/1.3$ & (c)(i)
	Neither likely to provide satisfactory model	Bdep1	3	Dep on Bdep1 and on Bdep1
SC	Award Bdep1 Bdep0 Bdep0 for comparison of 3 correct me Award up to Bdep1 Bdep1 for comparison of 3 correct	ans only or	for compared for com	rison of 3 correct variances/SDs only
		Total	14	

MS/SS1B	cont)			
Q	Solution	Marks	Total	Comments
4(a) (i)	r = -0.326 to -0.325 r = -0.33 to -0.32 r = -0.4 to -0.2 r = -0.4 to -0.2 r = -0.4 to -0.2	B3 (B2) (B1) (B1)		AWFW (-0.32569) AWFW AWFW AWFW
	Attempt at $\sum x \sum x^2 \sum y \sum y^2 \& \sum xy$ or Attempt at $S_{xx} S_{yy} \& S_{xy}$	(M1)		756 50004 738 48200 & 45652 (all 5 attempted) 2376 2813 & -842 (all 3 attempted)
	Attempt at substitution into correct corresponding formula for r r = -0.326 to -0.325	(m1) (A1)	3	AWFW
(ii)	Some/little/slight/(fairly/quite) weak/ (fairly/quite) moderate negative (linear) correlation/relationship/ association/link (<i>but not 'trend'</i>) between	Bdep1		Dependent on $-0.4 \le r \le -0.2$ OE; must qualify strength and state negative Ignore extra words unless contradict Bdep0 for 'low', 'small', 'poor', 'unlikely', 'medium', 'average', or adjective 'very'
	marks/percentages in the two examination papers	B1	2	Context; providing $-1 < r < 1$
(b)(i)	Identifying linear patterns/non-linear patterns/ multiple patterns/no pattern (<i>allow 'trend'</i>) Identifying outliers/anomalies Estimating/gives idea of value of <i>r</i> /sign of <i>r</i>	B2,1	2	OE; only one mark from each set B0 for reference to checking calculated value
(ii)	Graph (6 labelled points correct) (5 or 4 labelled points correct)	B2 (B1)	2	Correct \Rightarrow within a circle of radius equal to distance between 2 grid lines Deduct 1 mark for any unlabelled or incorrectly labelled point
(iii)	Two separate correlations/relationships/lines/ associations/links/sets of data (<i>but not 'trends'</i>)	B1	1	OE; eg A to F and G to L
(c)	A to F: (+) 0.7 to (+) 0.99 G to L: - 0.9 to - 0.5	B1 B1	2	AWFW; allow calculation(0.937)If not labelled, assume order A to F then G to LAWFW; allow calculation(-0.757)
		Total	12	

MS/SS1B	s (cont)			
Q	Solution	Marks	Total	Comments
5 (a)(i)	P(F & C) = 0.3 or 3/10 or 30%	B1		Ratios (eg 3:10) are only penalised by 1 accuracy mark at first correct answer CAO (0.3)
	$1(1 \times C) = 0.5 \text{ or } 5/10 \text{ or } 50/0$		(1)	(0.3)
(ii)	P(G or S) = 0.45 or 45/100 or 45%	B1	(1)	CAO (0.45)
(iii)	$P(C F) = \frac{0.3 \text{ or } (i)}{0.55} =$	M1		
	<u>30/55 or 6/11</u> or	A1		CAO (6/11)
	(0.54 to 0.55) or (54% to 55%)		(2)	AWFW (0.54545)
(iv)	$P(R' D) = \frac{0.25 \text{ or } (0.30 - 0.05)}{0.30}$	M1 M1		Correct numerator Correct denominator
	<u>25/30 or 5/6</u>	A1		CAO (5/6)
	(0.83 to 0.834) or (83% to 83.4%)		(3)	AWFW (0.83333)
(v)	$P(F C') = \frac{0.25 \text{ or } (0.60 - 0.35)}{0.60}$	M1		Correct expression
	<u>25/60 or 5/12</u>	A1		CAO (5/12)
	(0.416 to 0.42) or (41.6% to 42%)		(2, 3)	AWRT (0.41667)
			0	
(b)			,	Attempt at sum of at least 2 squared
	$P = [P(F \& C)]^{2} + [P(F \& G)]^{2}$	M1		terms; $0 < \text{term} < 1$; not $(a+b)$ May be implied by a correct expression or a correct answer
	$0.30^2 + 0.25^2$ or $0.09 + 0.0625 =$	A1		OE Ignore additional terms or integer multipliers May be implied by a correct answer
	or <u>1525/10000 or 305/2000 or 61/400</u>	A1		CAO (0.1525)
	(0.152 to 0.153) or (15.2% to 15.3%)		3	AWFW
		Total	12	

MS/SS1B	(cont)			
Q	Solution	Marks	Total	Comments
6 (a)	<u>$L \sim N(1005, 15^2)$</u>			
	$V(pack) = \frac{15^2}{12} \text{ or } \frac{225}{12} \text{ or } \frac{75}{4}$			CAO
	OR <u>18.7 to 18.8</u>	B1		AWFW (18.75)
	SD (pack) = $\frac{15}{\sqrt{12} \text{ or } 15/2\sqrt{3} \text{ or } 5\sqrt{3}/2}$ or			CAO; OE
	<u>4.3 to 4.4</u>			AWFW (4.33013)
	$P(L < 1000) = P\left(\frac{1000 - 1005}{15/\sqrt{12}}\right) =$	M1		Standardising 1000 using 1005 and $15/\sqrt{12 \text{ OE}}$; allow (1005 – 1000)
	P(Z < -1.1547) = 1 - P(Z < 1.1547) =	m1		Correct area change May be implied by a correct answer or an answer < 0.5
	1 - (0.87698 to 0.87493) = 0.123 to 0.126	A1	4	AWFW (0.12411) (1 - answer) \Rightarrow B1 M1 max
(b)(i)	99% (0.99) $\Rightarrow z = 2.57 \text{ to } 2.58$	B1		AWFW (2.5758)
	CI for μ is $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	M1		Used with <i>z</i> (2.05 to 2.58), \bar{x} (4.65) & σ (0.15) and $\div \sqrt{n}$ with $n > 1$
	Thus $4.65 \pm 2.5758 \times \frac{0.15}{\sqrt{24}}$	A1		$z (2.05 \text{ to } 2.06 \text{ or } 2.32 \text{ to } 2.33 \\ \text{or } 2.57 \text{ to } 2.58), \\ \overline{x} (4.65) \& \sigma(0.15) \\ \text{and } \div \sqrt{24 \text{ or } 23 \text{ or } 12 \text{ or } 11}$
	Hence 4.65 ± 0.08			CAO/AWRT
	OR	A1		
	<u>(4.57, 4.73)</u>		4	AWRT
(b)(ii)	Clear correct comparison of 4.5 with LCL or CI (eg 4.5 < LCL or its value or 4.5 < CI or its limits	BF1		F on CI only providing $LCL > 4.5$ (ie whole of CI > 4.5) Quoting values for LCL or for CI is not required BF0 for '4.5 is outside CI'; OE
	Agree with manufacturer's specification	Bdep1	2	OE; dependent on previous BF1
		Total	10	

MS/SS1E	B (cont)							
Q	Solution	Marks	Total	Comments				
7 (a)	$\sigma \approx \frac{10}{a}$ or $\frac{20}{b}$ or $\frac{\text{range}}{b}$ or $10c$ or $20d$	M1		OE; with $2 \le a \le 4$ $4 \le b \le 8$ or with <i>c</i> or <i>d</i> in equiv percentages Cannot be implied from a correct answer (justification required)				
	<u>2.5 or 3.3(OE) or 5</u>	A1	2					
SC	Award B1 for only 2.5 or 3.3(OE) or 5 with no justification or with a manual bar of the second sec	tion th incorrect	justificatior	$(eg \sqrt{10} = 3.16)$				
(b)	Valid statement involving: 391 and 405 OR 401 and 415 OR 24 and 10 OR 391 and 415 and 10/24 with linking statement	B1		Allow 'set weight' to imply 415 and/or 'mean' to imply 391 B0 for 10 linked to σ				
	95.5 > (value of σ of 2.5 or 3.3(OE) or 5)	B1		Accept ≠ rather than > Clear correct numerical comparison				
	Neither (likely to be) correct	Bdep1	3	Dependent on B1 B1				
(c)	Mean or $\overline{y} = \frac{8210.0}{10} = \underline{821}$ OR $\sum y = \underline{8200}$	B1		CAO;				
	Variance $\frac{110.00}{9} = \underline{12.2}$ or $\frac{110.00}{10} = \underline{11}$ OR $3.5 \text{ or } 3.3$	B1		AWRT CAO Award on value ; ignore notation AWRT				
	821 is similar to/within 10 of 820 OR 8210 is within 100 of 8200	B1		OE; clear correct numerical comparison of 821 with 820 Allow 'set weight' to imply 820 Or OE; clear correct numerical comparison of 8210 with 8200 but do not accept 'within 10' here				
	3.5 or 3.3 is similar to a value of σ of 3.3(OE) or 2.5	B1	4	Clear correct numerical comparison				
	TOTAL	Total	9 75					

Scaled mark unit grade boundaries - January 2013 exams

A-level

		Maximum	Scaled Mark Grade Boundaries and A* Conversion Points							
Code	Title	Scaled Mark	A *	Α	В	С	D	E		
LAW03	LAW UNIT 3	80	66	60	54	48	43	38		
MD01	MATHEMATICS UNIT MD01	75	-	63	57	52	47	42		
MD02	MATHEMATICS UNIT MD02	75	68	62	55	49	43	37		
MFP1	MATHEMATICS UNIT MFP1	75	-	69	61	54	47	40		
MFP2	MATHEMATICS UNIT MFP2	75	67	60	53	47	41	35		
MFP3	MATHEMATICS UNIT MFP3	75	68	62	55	48	41	34		
MFP4	MATHEMATICS UNIT MFP4	75	68	61	53	45	37	30		
MM1B	MATHEMATICS UNIT MM1B	75	-	58	52	46	40	35		
MM2B	MATHEMATICS UNIT MM2B	75	66	59	52	46	40	34		
MPC1	MATHEMATICS UNIT MPC1	75	-	64	58	52	46	40		
MPC2	MATHEMATICS UNIT MPC2	75	-	62	55	48	41	35		
MPC3	MATHEMATICS UNIT MPC3	75	69	63	56	49	42	36		
MPC4	MATHEMATICS UNIT MPC4	75	58	53	48	43	38	34		
MS1A	MATHEMATICS UNIT MS1A	100	-	78	69	60	52	44		
MS/SS1A/W	MATHEMATICS UNIT S1A - WRITTEN	75		58				34		
MS/SS1A/C	MATHEMATICS UNIT S1A - COURSEWORK	25		20				10		
MS1B	MATHEMATICS UNIT MS1B	<mark>75</mark>	-	<mark>60</mark>	<mark>54</mark>	<mark>48</mark>	<mark>42</mark>	<mark>36</mark>		
MS2B	MATHEMATICS UNIT MS2B	75	70	66	58	50	42	35		
MEST1	MEDIA STUDIES UNIT 1	80	-	54	47	40	33	26		
MEST2	MEDIA STUDIES UNIT 2	80	-	63	54	45	36	28		
MEST3	MEDIA STUDIES UNIT 3	80	68	58	48	38	28	18		
MEST4	MEDIA STUDIES UNIT 4	80	74	68	56	45	34	23		